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L survey paper on space rendezvous appears in Astronautica
Actal with many references. Terminal guldance for space rendez-
vous has been divided into two classes: That based on orbital
mechanics2 in the time domain and that based on proportional
navigation.3’4 This paper deals mainly with problems of des-
5)617!8

cent trajectories including soft-landing.

(1) General Equations of Motion

A point mass m is attracted to a planet by a central

force proportional to the inverse square of the distance. The

equations of motion ar'e9
_d_l‘5= gae (l)
ae The
. dk
d®u , db6 du go Ap
—t ===+ U - —F = - = 2
462 2k de kug Kku® (2)
where u = 1 = inverse of the radius vector, (3)
r

k = h? = [r20]3= square of the specific angular momentum,
(4)

ae,ar = transverse and radial specific forces, respectively,

and go

i

gravitational acceleration at the surface of the
planet.

A further transformation is advantageous by virtue of
equation (1). Let

du _ dk du _ (239) du (5)
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If equations (5) and its derivative with respect to 6 are sub-

stituted into equation (2), we have

d2u w® a4 ,°3p 1, du u,2 €o ap -

e = () =] = + (—) [u - + 1= 0, (o6

K2 [Eae k (u ) 2k’ dk (2 9) [ kug®  ku® (6)
as us

and — = by inverting equation (1). (7)
dk cag

The dependent variable k in equation (1) becomes the inde-
pendent variable k in equations (6) and (7). Equation (6) 1is
a key equation which deoes not contain 6 explicitly. It is

linear in u and can be solved independently of equation (7),

ag a

provided that -3 and ~§ are expressed in terms of k, such as
u u
ag = u® Gy(k) ana a, = u? Gr(k)’ (8)

where Ge(k) and Gr(k) are functions of k only.

(2) The Descent Trajectory

A vehicle in orbit is traveling in the direction b'- b as
shown on Fig. 1. At point b the vehicle begins its descent
phase by firing a retro-rocket having a specific force with a

radial component a_ and transverse component ag. The descent

r
trajectory is defined by its polar coordinates (r,e) measured
from the point of soft-landing O.

The measurement of 6 can be made by inertial means, e.g.
an lnertial guldance package wlith both gyros and accelero-
meters to determine the local vertical with respect to site
vertical, The quantity u = % can be determined by measuring
the altitude of the vehicle above the planet. The controlled

specific forces ag and a, will be in terms of the known

quantities 6 and u.



For the virgin landing of a vehicle near an unexplored
planet, 1t is desirable to allow the astronaut to hover the
vehicle near the surface. The conditions of hovering are zero
velocitles and zero accelerations in both the transverse and
radlial directions.

(a) Transverse Specific Force

In order to obtaln zero transverse veloclty the specific
angular momentum h_ at point O should be zero, thus k = h§ = 0.
The transverse specific force ag should be zero so that the
acceleration of the vehlcle in the same direction is also zero.
Thus we have @ ok

29 =25 () - oK (9)
where B is a constant. The power index n should be a positive
real number so that ag is bounded at k = O.

(b) Specific Angular Momentum

3
If the result of 5%— from equation (S) is substituted into
a

equation (7) and the integration is performed, we have

— 2

P (10)
0p k10

where kb i1s the value of k at 6 = Gb.

of 8 for n = i we obtain

~

Solving for k in terms

2
kK & (11)

2
ky 62
The specific angular momentum ratio %— may be obtained by
b
combining equations (4) and (11) into a linear relaticn
h _ 6

h .9 12
h " 6g (12)



(c) Radial Specific Force

a 1
The differentiation of —% from equation (9)(usinz n 5)
u

with respect to k may be obtained and substituted into equation
(6),
8o a

d®u 1, du 2 % r
. = - = 0. 1
ak® i (k) ax * PR ku ® ¥ kua) (13)

The value of a, must be chosen such that it 1s bounded every-
where during the course of landing, also it must satisfy the
boundary condition of soft landing and hovering. Thus
a, = w22 < dw + S0 - 82)(uu)] (18)
ug b
where € and { are positive real constants.

The value of a, in equation (14) is bounded since the
terms u and k are always positive real finite guantities. At
the surface of the planet the value of a, should be equal to
8o Thlis 1s obtainable by substituting k = 0 and u = U, into
equation (14). The above relation guarantees that the radial

acceleration is zero at the point of landing.

(3) Solution of the Problem

If equation (14) is substituted into equation (13) one

obtains a linear equation in u.

d®u 1, du , p=¢2 _
EI{—E + (E) I + 2 (k2— Cz)(u—uo = 0, (15)
or g%y , 1 du w22
a;c—;""lzaﬁ'l' ((J.)2 -'—k—zi) U=20 2 (16)
where ® = BE, (17)
r-rg
and U=-(u- uo) = P (18)

Under the boundary condltion that U = 0 at k = O the



solution of equation (16) in term of fractional order Bessel

Functions of the first kind as shown in Fig. 2(a) is 10,11,12
92
JmC(wkb EE)

o = : (19)

Uy JmC(wkb)
where Ub 1s the value of U at 6 = Gb .
The derivative of U with respect to k can be shown to be

J plok, ) -2 2 2

wl b/ dU £ /6 e 6

—_— = 2 J wk, —)-=J wk, ——) . 20
wa EE kb eb) wc( b eg) w§+1( b ei) ( )

For the Bessel Function of 1/2 order equations (19) and (20)

become simply sine function of 62

92
. s -1 sin(wkb g’g)
— = (=) and (21)
Up Oy sin(wkb)

sin wk ~1 2 2. - 2
b (dU 4 0 1 0 o
—_— = (— —) - = z Z)1.(2
o (EE) (eb) [cos(wkb 62) 2(cnkb 62) sin(wkb 92)] (22)
b b b
By differentiating equation (19) with respect to 8 one

obtains

e .& ,6 -e g2 02
20k, U~ 49 - 'é;[l?;(ag) T (ks =20 Jute (o, 5-2-)]- (23)

b b
For 0 wl, the term JwC+1(O) is zero. However, the term Jut

is of the order of magnitude of (62)""c as 6-—0. Therefore the

term gg is of the order of
el-2+2w§ = QEwC-l'

. dr 1 dU 2

From equation (24) and the condition == = = ==, where u? 1is real
as u2 de

and positive 1t is concluded that as 6-—0,
4au 1 dr
— — 00 for 0 =, also — s vertical landing;
a6 Col<3 a6 % &
au dr

3 - constant for wl = %, also T = constant, inclined landing ;



U .o for = wl, also %% = 0, horizontal landing. (25)

as 2
(4) The Characteristic Root

The state of the vehicle at the starting point b is com-

pletely defined if the quantities kb, Gb, Ub and au =W

aeé |y, b

with respect to the planet are known. From equation (23) we

have
6 J ,(wk, )
b @™ - wb - 2
kab Ub b (Dkb ch((.l)kb) J(L)C+l(mkb) . ( 6)
The above equation may be solved for its characteristic root
Cl)kb = 1 (27)

provided Gb,Ub,Wband w{ are given. It 1s emphasized here
that n 1s the lowest positive real root of equation (26).

An example 1s given here for descent from a circular orbit
(wb = 0) along a trajectory of Bessel Function of 1/2 order.

Thus from equation (23) one obtains

6,8in (wkb)

du 92 62,1 o2
Ty (55) oo, " 2 cos(wk, 55) - (wkb 65) sin(wk, EE) =0
b b b b b 9=9b
(28)
from whlch we have
tan ok, = 2 wky . (29)

The value wky =1 = 1.16562 may be obtained for its funda-

mental root for the case wl = 1/2,

‘The dimensionless form of %% is shown in Fig. 2(b) for
wk, = n and various values of wl.

b
(5) The Angular and Radial Velocities

With the aid of equations (4) and (11) the angular velocity

é may be written as



(30)

From equations (18), (19
92
J K, —
0 U, 2 g U, wc(w b eg) 2
0
== () G -5 ey ) (31)
The value of 6 at ® = 0 is zero as shown in Fig. 3(a). This
is in conformity with the requirement of soft landing. Also
a -2 du
a% =u" o, (32)
V22 AU (33)

- 49 au _ /e
ae

where au
dt — at ge
(23), (32) and (33) one obtains

Combining equations (11)
2 ¢ ,0 ¢ 02 02
) [Eg(gg) I (ke Eg) - Jw§+1(wkb 553]:(34)

9waC(wa) ar _ 6.
at — 6y,

2wkb Ub
which is also plotted in Fig. 3(b) for wkb = 1 and various

values of w(.
It 1s expected that the reasoning given in discussing
Thus the order of magnitude of

equation (24) holds also here.
dr .,
the term IT 18
therefore dr = 0, for 0 wl . (36)
dt 0=0

Equation (36) indicates that the radial velocity of the

vehicle is also zero at the point of contact on the surface

of a planet as would be expected,
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